DNA Gene Expression Classification with Ensemble Classifiers Optimized by Speciated Genetic Algorithm

نویسندگان

  • Kyung-Joong Kim
  • Sung-Bae Cho
چکیده

Accurate cancer classification is very important to cancer diagnosis and treatment. As molecular information is increasing for the cancer classification, a lot of techniques have been proposed and utilized to classify and predict the cancers from gene expression profiles. In this paper, we propose a method based on speciated evolution for the cancer classification. The optimal combination among several feature-classifier pairs from the various features and classifiers is evolutionarily searched using the deterministic crowding genetic algorithm. Experimental results demonstrate that the proposed method is more effective than the standard genetic algorithm and the fitness sharing genetic algorithm as well as the best single classifier to search the optimal ensembles for the cancer classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

A novel hybrid method for vocal fold pathology diagnosis based on russian language

In this paper, first, an initial feature vector for vocal fold pathology diagnosis is proposed. Then, for optimizing the initial feature vector, a genetic algorithm is proposed. Some experiments are carried out for evaluating and comparing the classification accuracies which are obtained by the use of the different classifiers (ensemble of decision tree, discriminant analysis and K-nearest neig...

متن کامل

Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm

This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Cancer Prediction Using Diversity-Based Ensemble Genetic Programming

Combining a set of classifiers has often been exploited to improve the classification performance. Accurate as well as diverse base classifiers are prerequisite to construct a good ensemble classifier. Therefore, estimating diversity among classifiers has been widely investigated. This paper presents an ensemble approach that combines a set of diverse rules obtained by genetic programming. Gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005